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Abstract

The relation between pseudo-spherical surfaces and the inverse scattering method is exempli-
fied for several evolution equations. Conservation laws for the latter ones are obtained using a
geometrical property of these pseudo-spherical surfaces.
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1. Introduction

In 1979, Sasak[1] observed that a class of nonlinear partial differential equations
(NLPDEsSs), such as Korteweg—de Vries (KdV), modified Korteweg—de Vries (MKdV) and
sine-Gordon (SG) equations which can be solved by the Ablowitz, Kaup, Newell and Segur
(AKNS) 2 x 2 inverse scattering method (ISNB], was related to pseudo-spherical sur-
faces (pss). The geometric notion of a differential equation (DE), for a real function, which
describes a pss was actually introduced in the literature by Chern and Terj@hhdtere
equations of typer, = F(u, uy, ... , uk) (uck = 8*u/ax*) were studied systematically.
Later, in[4,5], this concept was applied to other types of DEs. A generic solution of such
an equation provides a metric defined on an open subskf,ifior which the Gaussian
curvature is—1.
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Such a DE is characterized as being the integrability condition of a linear problem of the
form

n/2 0
Vy = +A |, v = Qv,
0 —n/2

wheren is a parameterQ is a 2x 2 traceless matrix and is a 2 x 2 off-diagonal ma-

trix depending om, 1 and its derivatives. Examples of this class of equations are (real)
equations of the AKNS type. Other examples, which are not AKNS, can be found in
[4—6]. Geometric interpretation of special properties (such as infinite number of conser-
vation laws and Backlund transformations (BTs)) for solutions of DEs which describe
pss have been systematically exploited4r10]. In 1995, Kamran and Tenenblgt1],
extending the results of Chern and Tenenlj®t gave a complete classification of the
evolution equations (EES) of typg = F(u, uy, ... , uX) which describe pss by consider-

ing equations which are the integrability condition of a linear problem of the form given
above.

Moreover, they proved that there exists, under a technical assumption, a smooth mapping
transforming any generic solution of one such equation into a solution of the other. This geo-
metric notion of scalar DEs was also generalized to DEs of theftype, u, uy, ... , uxnm) =
0 by Reyes recently if8,21,22]

Let ¢ be a Riemannian metric al2, V the corresponding Levi—Civita connection on
the tangent bundl@M?2, {e1, e»} be a moving orthonormal frame on some open domain
U c M? and{w1, w,} a corresponding moving coframe. The relatiohg;) = a)l] ® e;j
define the connection one-form matrcio;’ with respect to the framéeq, e2}. The or-
thogonality of this frame implies thab} = w3 = 0,w? = —w} = (w3). Hence the
Levi—Civita connection one-form on the tangent buri@ild® with respect to the moving
frame{es, e»} is

0 w3
—w3 O
It yields the following structural equations:
dw1 = w3 A w2, dwr = w1 A ws. ()
The Gaussian curvatukeof the spacef? is defined by the Gauss equation
dws = kwy A w1. 2

Sasak|1] gave a formula for some local connection on a two-dimensional real Riemannian
manifold M2, which is quite relevant in the theory of nonlinear integrable partial differential
equations:

1 w2 w1 — w3
2==: : 3)
2 w1 + w3 —w?
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as a new connection form for some (nonspecified) bundle feiThe key property of the
matrix one-forms2 is that it satisfies the curvature condition

O=dR -2A2=0,

iff k = —1 onU. In some older (for examplgL2]) and many subsequent papers (some
of the most recent afd3—16) different matrix one-forms were discussed, depending on
a functionu (or some functions) of some independent variables, such that the curvature
condition® = 0 for this form is equivalent to one of the well known NLPDEs having an
infinite number of conservation laws and symmetry groups. The generalization to higher
dimensions is given ifiL7].
The condition® = 0 depends only on relation (1) and the commutative relations in the
algebra SI2, R). The one-form2 may be written a§l7]:
0 w3 —ow1
=] -w3 0 —-w]|,
—w1 —w? 0
which contains the Levi—Civita connection form
0 w3
—w3 O

as a direct summand and avoids the surprising factor 1/2 in (3).

As a consequence, each solution of the DE provides a metridgrwhose Gaussian
curvature is constant, equal tal. Moreover, the above definition is equivalent to saying
that the DE fow is the integrability condition for the problem:

V1

dv=2v, v=| v |, 4)

V3

where d denotes exterior differentiations a vector and the 83 matrix$2(£2j, i, j = 1-3
is traceless

tr2 =0, 5)

and consists of a one-parametgrtbe eigenvalue) family of one-forms in the independent
variableqx, ), the dependent variableand its derivatives. Integrability &gq. (4)requires:

O=d’v=d2v—Q2A dv=(d2 — 2 A Q)v,
or the vanishing of the two-form
O=dR -2 A2 =0, (6)

which corresponds, by construction, to the original NLEE to be sokqd(4)corresponds
to three equations and only selected solutions are possible, i.e. those sati§jyinkis
was of course, equally true in that Sasaki formulation.
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The main aim of this paper is to extend somewhat the inverse scattering problem in
reference[18] by consideringv as a three component vector afidas a traceless
3 matrix one-form. An application of the original Chern and Tenenblat construction of
conservation laws is given for the nonlinear Schrédinger equation (NUS3E)}28]
Liouville’s equation[29], two families of equationg10], the Ibragimov—Shabat (IS)
equation, the Camassa—Holm (CH) equation and Hunter—Saxton (HS) equation, which
are very useful in several areas of physics as may be seen from the numerous
references.

The paperis organized as follows Section 2ve introduce the inverse scattering problem
and apply the geometrical method to several PDEs which describe pSection 3we
obtain an infinite number of conserved densities for some NLEEs which describe pss using
a theorem of Cavalcante and Tenenljidt In Section 4we obtain conservation laws by
extending the classical discussion of Wadati ef20]. Section 5contains the conclusion.

2. Inverse scattering problem and DEswhich describe pss
Some NLPDEs, invariant to translationsdandz, can be solved exactly by an ISM with
the set of linear equations
viy = fa1w2 — fiavs,  var = —fa1w1 —nvs, vz = —fi1v1 — oz, (7)
vy = faov2 — fiavs, v = —faov1 — faovs, vy = — fiovi — faova. (8)

The functionsfj, 1 < i < 3,1 < j < 2, depend o, ¢, u and its derivatives. They
can also be functions of the parameteM/e have restricted ourselves to the case where
f21 = nis a parameter. The compatibility conditions Exs. (7) and (8)obtained by cross
differentiation, are:

fizx — fire = farfz — nfa2, ()]
f22x = f11f32 — f12f31, (10)
fazx — favr = fi1f22 — nfie. (11)

In order to solvg9)—(11)for fjj in general, one finds that another condition still has to be
satisfied. This latter condition is the evolution equation (EE). In terms of exterior differential
forms the inverse scattering problem can be formulated as follegs: (7) and (8¢an be
rewritten in matrix form by usindeq. (4) ands2 is a traceless X 3 matrix of one-forms
given by

0 fardx + fapdt  — fradx — fordt
2= —f31 dx — f32 dr 0 -n dx — fzzdt . (12)
—fi1dx — fordt —ndx — foodr 0

In this schemg(6), yielding the EE, must be satisfied for the existence of a solution
fi-1<i<3,1< j<2. Whenever the functions are real, Sagakigave a geometrical
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interpretation for the problem. Consider the one-forms defined by
w1 = frndx + fiodt, w2 = fa10x+ foodt, w3 = fa1dx+ fazdr.

We say that a DE fon(x, ) describes a pss if it is a necessary and sufficient condition
for the existence of functionf§j, 1 <i < 3,1 < j < 2, depending on and its derivatives,
f21 = n, such that the one-forms kq. (2) satisfy the structurgq. (3)of a pss. It follows
from this definition that for each nontrivial solutianof the DE, one gets a metric defined
on M?, whose Gaussian curvature-d..

It has been known, for a long time, that the SG equation describes a pss. More recently,
other equations, such as KdV and MKdV equations, were also shown to describe such
surface$2]. Here we show that other equations such as the NLSE, Liouville's equation, two
families of equations, IS equation, CH equation and HS equation describe pss as well. The
latter equations proved to be of great importance in many physical applicggi@tial—30]

The procedure is clarified in the following examples.
Let M2 be a differentiable surface, parametrized by coordinates

2.1. Nonlinear Schrddinger equation

Consider
w1 = %(u —u"ydx+[in(u —u®) +i(uxy+u})]ds, wr=ndx+ [2in? + iuu*] dz,
w3 = %l(u +u®) dx + [—in(u + u™) + i(u} — uy)]de. (13)
M? is a pss iffu satisfies the NLSE
iU, 4 2uxx + ulu* =0, (14)

2.2. Liouville’s equation

Consider

w1 = u, dx, w2 = ndx + ¢ dr, w3 = < dr. (15)

n n

ThenM? is a pss iffu satisfies the Liouville’s equation

uxy = €. (16)

2.3. The family of equations
Consider
2g—0
a)1=—§g’dt, a)2=r)dx—i—<E g —l—ﬂn) dr,
n
w3 = &uy dx + &(ag + B)uy dt. (7)

ThenM? is a pss iffu satisfies the family of equations
[ur — (ag(u) + Buslx = —¢' (), (18)
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whereg(u) is a differentiable function of which satisfieg” + ug = 6, wherew, 8, 1« and
6 are real constants, such ti§8t= an? + u.

2.4. The family of equations

Consider
£2g— 0
w1 =E&uy dx + &(ag + Pu, dt, w2 = ndx + + Bn ) dr,
&,
w3= =g dr. (19)
n

ThenM? is a pss iffu satisfies the family of equations
[ — (ag(u) + Pux]s = &' (), (20)

whereg(u) is a differentiable function af which satisfies” + ug = 0, wherea, 8, u and
6 are real constants, such th§at= an? — u.

2.5. NLEE

Consider
w1=—n\/gux dr,  wp=ndx+ (n3+ %nu2+an) dr,
w3 = \/gu dx + \/g (nzu + %us + uxx + otu) dr. (22)
ThenM? is a pss iffu satisfies the NLEE

U = uxxx+ (a + Mz)uxv (22)

whereq is a constant.

2.6. The IS equation

Consider

w0 = (”—x + u2> dx + (@ + u® + 8u? + Buuyy + 9u3ux> dt,
u u
wr=ndx+n (M +u4+4uux) df, w3=-ndx—n (M +u4+4uux) dr.
u u
(23)
ThenM? is a pss iffu satisfies IS equation

U = Uxxx T+ 3M2MXX + 9ULI§ + 3M4Mx. (24)
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2.7. The CH equation

Consider
_ B _ 2
w1 = Mxx—u—ﬂ+ﬁ—77 dx
u u
- <Lﬂ—%+n‘2+u2—1+uﬁ+;’“—uuxx> dr,

w2 = ndx + (%ﬂ—nu—i—n_l—i—ux) dr,

w3 = (uxx—u+1)dx+<u—'§—MXﬂ - lz - ﬁz +0 2w’ —u+ I uuxx> dr.
n n n n n
(25)
ThenM? is a pss iffu satisfies the CH equation
2utxx + Ulkxx = Uy — Uxxt + 3UU, (26)
in which the parametengandg are constrained by the relation
nt =’ + B’ = 2+ 128 (27)
2.8. The HS equation
Consider
- 1—
w1 = (uxx — B) dx + (ux uzp + nzﬁ — Ulkx — 1+ uﬂ) dr,
1-—
w2 =ndx + (—'B — nu—l—ux) dr,
n
— 1—
w3 = (uxx + 1) dx + <ux nuxﬁ + nzﬁ — Uly — u) dr. (28)
ThenM? is a pss iffu satisfies the HS equation
2uuxy + Uxxt + Ulkxx = 0, (29)
in which the parametengandg are constrained by the relation
P+ =1 (30)

3. Infinite number of conservation laws for some NLEEs

In this section we apply the Cavalcante and Tenenblat method to obtain an infinite num-
ber of conserved densities for some NLEEs. To each equation we associate furfgtions
satisfying the following theorerfv].
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Theorem 1. Let fjj, 1 <i < 3,1 < j < 2, be differentiable functions of ksuch that

—f11e + fi2x = farf2 — fa1f32, —fa1r + foox = f11f32 — f12f31,
—f31: + f32x = fi1f22 — fi2fa1. (31)
Then the following statements are valid
(i) The following system is completely integrable gor
éx = f31+ f118IN¢g + f21C0S¢, ¢ = fa2+ f12SiN¢ + fa2c08p. (32)
(i) For any solutiong of (32)
o = (f11C08p — f215iN¢) dx + (f12C0Sp — fa22Sing) dt, (33)

is a closed one-form
(iii) If fj are analytic functions of a parameterat the origin then the solutiong(x, 1, n)
of (32) and the one-forma are also analytic i at the origin

Cavalcante and Tenenblat suppof&d

i t.n) = Znuon (34)
Then the solutlorzp of (32)is of the form

¢uﬁm>=§§muﬁmﬁ (35)

We consider the following functions @f for fixed x, ¢:

A(n) = cosgp = cos(z o;(x, t)nf) , B(n) = sing = sin (Z o;(x, t)n/) .

j=0 j=0
(36)
It follows from (36) that
. d A “Lr—idB
A(0) = cospo, B(0) = singo, d_r]k(O) =—(k—1)! ; T d_ni(o)(ﬁkfi,
dB r—ida
—(0) = (k—1)! — (O)pr—i 37
a0 = )Z;” a7 O (37)
for k > 1. Finally, we define the functions af ¢:
i~ A Nl N ) N Ll
flkdjz )—fzkﬁ( ) k—flkF()-Fkadnj,i(),
Fy = f31k+L]]<'1, Fnk—f3k+z H/?r¢n r+Z L]rcn’ (38)
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wherei, j, n are the nonnegative integers such thati, n > 2, andk = 1, 2. The functions
H andL] defined above depend @@, 1, . .. , ¢;—;; the functionsFy, and Fni depend
ong¢g andeo, ¢1, ... , d,—1, respectively.

Corollary 1. Let fij(x,t,n),1 <i < 3,1 < j < 2, be differentiable functions o, r,
analytic atn = 0, that satisfy(31). Then with the above notatigrihe following statements
hold:

(a) The solutionp of (32)is analytic aty = 0, thengg is determined by
pox = fh+ L o= fH+LY (39)
and for j > 1, ¢; are recursively determined by the system
bjx = H°$;j + Fj1.  ¢j0 = H3%p; + Fjo. (40)
(b) For any such solutiow and integerj > 1
ol = XJ: L de ot ) . (41)
— G0

is a closed one-form

Now we consider NLPDEs for(x, 1) which describes a pss. There exist functigipsl <
i <3,1<j<2,whichdepend on(x, r) and its derivatives such that, for any solution
of the EE, fjj satisfy(31). Then it follows fromTheorem that(32)is completely integrable
for ¢. Supposefjj to be analytic functions of a parametgithen the solutiong of (32) and
the one-formw, given in(33), are analytic im. Their coefficientsp; andw’, as functions
of u, are determined i(39)—(41) Therefore the closed one-formg provide a sequence
of conservation laws for the PDE, with conserved density and flux given respectively by

J J
D:— HIJ L ij .
J Z(j—i)! 1 Ej 2 0: (j—l')!Hz’ j=0. (42)

We consider the following examples.

3.1. Nonlinear Schrédinger equation

For Eg. (14)we consider the following functions af(x, r) defined by:

fii=2w—u®,  fo=linw—u")+iu,+udl, fa=n,
fao=[2in® +iuu*],  far= F@+u®), fao=[—in@+u*) +i@ul—u)l,
(43)

as corresponding taq. (13) For any solution: of Eq. (14)the above functiongjj satisfy
(31). Applying the corollary, we have a sequence of functignsietermined in(36) and
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(37). It follows from (43) that(39) reduces to
¢ox = _71(M +u*) + %(u — u™*) singo,

¢o,r = i(uf — uy) + i(u + uy) Singg + 2iuu* coseo, (44)
and from(37) we obtain recursively
¢ = <1 4 / e ‘dx) =1 (45)
where

= / %(u — u™) cosgg dx,

and
1 dita ] *) dl
Fjl_ G—1 d77/ 1( )+ (O)(b] i
The sequence of conserved densmes for NLSE is given by
1 . 1u—u*)d/A 1 d/-1B ,
E(u_u ) COS¢o, ﬁTW(O)_ G— Dl dpi- —©, j=1 (46)

Solving the integrable system &ft. (44) then from¢g we obtaing;, j > 1, defined in
(45).

3.2. Liouville’s equation

ForEq. (16)we consider the functions defined by

u u

e e
fui=uy, f12=0, faa=mn, f22=7, fa1=0, f32=7- 47)

For any solution: of Eq. (16) the above functions satis(@1). As in the preceding exam-
ple, we obtain a sequence of conserved densitigd &by using theorenfl). Substituting
(47)into (32), we obtain the system of equations

¢y = uySing + ncosp, ¢ = %(1+ cosg), (48)

which is completely integrable wheneveis a solution oq. (16) From the first equation
of (48) we conclude thap is analytic with respect tg. Therefore, consider

o
p=> ¢;(x.0n. (49)
Jj=0
Eq. (48)reduces to
¢ox = uyxSingo, ¢o=nmw, n=0,35...,

b= (1+ / e hdx) j>1, (50)
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where
h = —/uxdx: —u+g(), F11=-1,

and
1 dila 1220 dia
FO+-Y ’—uxd—n,.mwj-i, jz2

Fp=—— - =
A= G dni- ] il

i=1
Using (37) in the above expression, we obtain in terms ofu. We display only the first
terms of the series:

¢o=nn, n=0,305,..., ¢1=eh<l+/e_hdx>, ¢2=eh, etc
(51)
The sequence of conserved densities for Liouville’s equation is given by
u, d/A 1 d/1B
x COS¢ho, -0 - ——0), j>1 52
ux COSgo i dnf() (j—l)!dnffl() J (52)

Using the expressions i&g. (37)and the functiong; given in(50) we obtain the first
conserved densities:

—uy, uge (2ut2 + 2uy + €"uy), eta (53)
3.3. The family of equations

For any solution: of the family of Eq. (18) the functions

24 _
f11=0, fi2= —%g’, faa=mn, fa2= + Bn,
far=8uy, fa2 = E&(ag + Bux, (54)
satisfy(31). Applying the corollary, we obtain;, j > 0, defined by
o _/5 dx = &u + h(1) ¢j = ! dj_lA(O)d =1 (55)
0 = Uy O0x = su ’ T G- dn/i—1 x, J=L

Using(37) in the above expressions we obtagin The first terms are
po=Eu+h@®, P1= / cosgodx, ¢ =— f p1singodx, etc  (56)

The conserved densities are given by

d/-1B ,

Gt =zt (57)
Using(37), we obtain the first terms

singo. ¢1 COSPo, 22 COSPo — ¢ singpo, etc, (58)

where thep; are given in(55).
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3.4. The family of equations
For Eg. (20)we consider the functions af(x, t) defined by

fui=E8ux, frz=4ag+ Bux, [fa=n,

2
+Bn, fa1=0, fa= %g/- (59)

f22=g g

For any solution: of Eq. (20) the above functiongj satisfy(31). Applying the corollary,
we have a sequence of functiopsdetermined in(36) and (38) It follows from (59) that
reduces to

o = Euxsingo, &g’ + (5% — 6) cospo = 0, (60)
and from(37) we obtain recursively

qu:eh (1+/Fjlehdx), j>1 (61)
where

h = /Sux COSeo dx,
and

1 di-la 13— da
F' = - — x_. -_i.
R dn/_1<0>+ji§:1: T 0,

The sequence of conserved densities for the family of equations is given by

A 1 dB
2820 - —0, j=z1 (62)

e eosto GGy O T Gl dy -

Solving the integrable system Bfy. (60) from ¢g we obtaing;, j > 1, defined in(61).
3.5. NLEE

For any solution: of the NLEE(22) the functions

f11=0, fiz= —ﬂ\/gux, fa=n.  fa2= 0+ Fnu® + an),

f31=\/gu, f32= \/g(nzu + 3u® + uxc+ av), (63)
satisfy(31). Applying the corollary, we obtain;, j > 0, defined by
2 1 d/i—1A ,



344 A.H. Khater et al./ Journal of Geometry and Physics 51 (2004) 332—-352

Using(37) in the above expressions we obtgin The first terms are

¢o = \/g/udx, ¢1:/ COS¢g dx, ¢2 = —/qblsinqbodx, etc

The conserved densities are given by

d/~1B
W(O), j=1

Using(37), we obtain the first ones
singo. ¢1 COSpo, 242 COSpo — 3 Singbo, et (65)
where thep; are given in(64).

4, Conservation laws for NL EEswhich describe pss

One of the most widely accepted definitions of integrability of PDEs requires the exis-
tence of soliton solutions, i.e., of a special kind of traveling wave solutions that interact
“elastically”, without changing their shapes. The analytic construction of soliton solutions
is based on the general ISM. In the formulation of Zakharov and Sha®htall known
integrable systems supporting solitons can be realized as the integrability condition of a
linear problem of the form

vy = Pv, v, = Qy, (66)

where the matrice® and Q are two 2x 2 null-trace matrices

2 q A B
| 2= : (67)
r 7 CcC -—-A

Heren is a parameter, independentadindz. Thus, an equation is kinematically integrable
if it is equivalent to the curvature condition

P =

Konno and Wadati introduced the functifi8]
r=2 (69)
V2

and for each of the NLEE, derived a BT with the following form:
u=uo+ f(In), (70)

whereu is a new solution of the corresponding NLEE. As mentioned in the previous
sections, Sasakl], Chern and Tenenbl§d], and Cavalcante and TenenHlat have given
a geometrical method for constructing conservation laws of equations describing pss. The
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formal content of this method is contained in the following theorem, which may be seen as
generalizing the classical discussion on conservation laws appearing by Wadde} al.

Theorem 2. Suppose that; = F(u, uy, ... ,u,x) or more generallyF(x, t, u, uy, ... ,
umm) = 0is an EE describing pss. The systems
D
D¢y =qr+ < ;q - 77> ¢1— 4%, (71)
n B
Di(5+¢1)=Di(A+=—01). (72)
q
and
Dxr 2
Dipe=—qr+{ ——=+n)d2+ 43 (73)
n C
Di(3+¢2) = Di(A+—¢2). (74)
r
in which D,, and D; are the total derivative operator defined by
G J— 3 ) =y D
D = — -, D = — D —_—,
o= g T2 g 1= T2 DG
k=0 k=0
are integrable on solutions of the equation= F(u, uy, ... ,ux) or generally F(x, ¢, u,
Uxy ooty uxntm) =0.
Proof. The equatiom, = F(u, uy, ... ,ux) ormore generallyf(x, t, u, uy, ... , unm) =

0 is the necessary and sufficient condition for the integrability of the linear prof@én
Equivalently, in(68), the functions, ¢, A, B andC satisfy the equations

Ay, =qC—1rB, (75)
qr —2Aq— By + np =0, (76)
C.=r+2Ar—nC. 77)
Set
%1
n= )
V2

and definepy = ¢/ I, ¢2 = rI". Straightforward computations usifgs. (75)—(77nllow
one to check that if

is a nontrivial solution of the linear systenv & 2v, ¢1 is a solution of the systerfv1)
and (72)and¢, is a solution of the system &fqgs. (73) and (74) O
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This theorem provides one with at least offdependent conservation law of the EE
up = Flu,uy, ... ,ug)Or F(x, t,u,uy, ..., umm) = 0,towit, Egs. (71) and (72r ((73)
and (74). One obtains a sequencempfndependent conservation laws by expandiagr
¢2 in inverse powers of [9]

[e¢]

d2= 30", (78)

n=1
consideration oEq. (73)yields the recursion relation

¢ = - (79)

¢(n+1) ¢(n) + Dx¢(n) +Z¢(z) = s (80)

which in turn, by replacing int¢74), yields the sequence of conservation laws of equations
integrable by AKNS inverse scattering found by Wadati ef20]. This section ends with
the examples.

4.1. Nonlinear Schrodinger equation

For Eq. (14)we consider the functions af(x, r) defined by
r= _71u*, q= %u, A—in®+ %qu*
B=[inu+iuy], C=—inu®)+iu}). (81)

Eq. (73)becomes

1 D u*
Dt = qut + (25 4 0) 2+ 63 82

Assume that, can be expanded in a series of the fdif8).
Eq. (81)implies thatp, is determined by the recursion relation

95" = uur, (63)
n—1 ] )

i=1

wheneveru(x, 1) is a solution of the NLSE. This recursion relation yields a sequence of
conserved densities given by the coefficients of the serigs in

1 0
(") —n
. 2_ (85)

which one obtains fronkq. (74)
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4.2. Liouville’s equation

For (16) we consider the functions defined by
1 1 et —et et
= - s = - , A = ), B = 5 C = —_—. 86
r Zux q Zux 21 21 21 (86)

Eq. (76)becomes

-1 D,u
Dx¢2=—uf+( : -
X

2 > b2 + b3. (87)

Assume thatp, can be expanded in a series of the faif8). Eq. (87)implies thate; is
determined by the recursion relation

¢(l) 71 2 (88)

u,
u
¢(n+l) Dy x¢(n) +Dx¢(n) +Z¢(’)¢(n l), n>1, (89)

wheneveru(x, t) is a solution of Liouville’'s equation, and it follows frofag. (74)that
the coefficients of the series i given in(85) are a sequence of conserved densities for
Liouville’s equation.

4.3. The family of equations

For any solution: of the family ofEq. (18) we consider the functions

‘i:ux _sux 1 -‘Ezg—e
= —, = . A: —_ .
r=—- 4 5 5 ( . + Bn

1
B=-3 (sg’ + &ag + ﬁ)ux) . =3 (é(ag + Bux — %g’> : (90)
Eq. (73)becomes
122  (Dxitx 2
Dt = g6+ (2 40) g2+ o)

Assume thaty, can be expanded in a series of the fdif8). Eq. (91)implies thatg; is
determined by the recursion relation

oL = 12, (92)
n D LDxllx n ﬂ ’ " i

whenevem (x, 1) is a solution of the family of equations, and it follows frdgqg. (74)that
the coefficients of the series i given in(85) are a sequence of conserved densities for
the family of equations.
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4.4. The family of equations

For theEq. (20)we consider the functions af(x, r) defined by

. x 1/&%—6 1 ,
= =T A= (S 8 +ﬁn), 5= (%g +s<ag+ﬁ>ux),
1
C= > <§(ag + Bu, — ég/> . (94)
n
Eq. (73)becomes
—1 2 2 Dxl/l_x 2
Dy¢2 = TE uy+ (_ + 7)) @2 + ¢5. (95)

Assume thatp, can be expanded in a series of the fqff8). Eq. (95)implies thatg, is
determined by the recursion relations

-1
-1 D.u n o
1 1
95’ = &k o)V = =0l + D + 3 06y nz 1 (96)
i=1

whenever(x, £) is a solution of the family of equations, and it follows frdeq. (74)that
the coefficients of the series ip given in(85), are a sequence of conserved densities for
the family of equations.

4.5. The NLEE

For any solution: of the NLEE(22) the functions

u —u 1/ 4 nu? )
—, q=—, A=+ +a),
o e Ama(re e

r =

1 2 M3
BZTG _nux_n“_g_“xx—au )
1 3
C = % <—Wx 4 ,72u + % + Uy + au) . (97)
Eq. (73)becomes
1 D,u
Dy¢2 = éuz + <T + 77) ¢2 + ¢3. (98)

Assume thatyo can be expanded in a series of the fdff8). Eq. (98)implies thatg; is
determined by the recursion relation

g5 = g, (99)

-1
D.u n N
95 = =0y + Dy’ + 39595 n= 1, (100)
i=1
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whenevel (x, 1) is a solution of the NLEE, and it follows froig. (74)that the coefficients
of the series i, given in(85) are a sequence of conserved densities for the NLEE.

4.6. The IS equation

For any solution: of the ISEq. (24)we consider the functions

rzg(b;—x—i-uz—??), q=%(”—"+u2+n), A=g(uxx+u +4uux),
B:%[(m(—i— +8u =+ Suikx + u ux) (%(—f-u +4uux)],
C=%[(M+ + 82 + Bl + 9u ux)—n(”TXX+u4+4uux)]. (101)

Eq. (73)becomes
1 2 2 Dy (ux/u + u? — 1) 2
DX¢Z_T<( +u) —n>+( i uZ—n +n)¢2+¢2. (102)

Assume that, can be expanded in a series of the fq{#8). Eq. (102)implies thatg, is
determined by the recursion relation

1 2
M _ 2\2 2
S 4<(u+“) n), (103)
-1
o) _ Dalsfutu? —m) ) Q) ”Z Q) f(n—i)
2 uy/u + u? — ¢y + Dy + ¢y ¢y T, n=>1, (104)

i=1
wheneveru(x, r) is a solution of the IS equation, and it follows froEy. (74)that the

coefficients of the series i, given in(85), are a sequence of conserved densities for the
IS equation.

4.7. CH equation
For any solution: of the CHEQ. (26) we consider the functions
B, B n? 1 108
= (”XX_”_E+2_r,2_T+E 4= g\p A

Az}(%ﬂ—ﬂu+n‘l+ux>, B=<”"ﬂ+—”+”ﬁ_1 ”ﬂ>

n 2 2n?
C=<M2+71_2—UU>(X_%_?__(/3_1)<1+n—12>—%)’ (105)

in which the parametengand g are constrained by the relati¢®7). Eq. (73)becomes

_ -1 B, B n? WN\N(B
Dx¢2—7<uxx —§+Z—7+§><F—n —,3—1>

Dy (uxx — u) X
" (uxx—u—ﬂ/2+ﬂ/2,72_n—2/2_|_1/2+’7> P2 + ¢5. (106)
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Assume thatp, can be expanded in a series of the fqff8). Eq. (106)implies thatg; is
determined by the recursion relation

-1 B B n? 1\/B _
@ _ 2
2P 2V (E —B8-1), 107
o - (uxx u—73 + 272 5 + 2) <772 n B ) (107)
n Dx - n n
ouD — (xx — 1) ¢S + Dyps”

xx—u— B2+ Bj2? —n2/2+1/2" 2
n—1

+ ey, n=1, (108)
i=1

wheneveru(x, r) is a solution of the CH equation, and it follows frofy. (74)that the
coefficients of the series im, given in(85), are a sequence of conserved densities for the
CH equation.

4.8. HS equation

For any solution: of the HSEq. (29) we consider the functions

B 1 -1 1/1-p8
r:(uxx—i-i-E), t]=7(/3+1), A:—(T—nu—i—ux),

1 x — Uy 1- -1
B=_-up—1+u), C:(” uﬁ+ Zﬂ—uuxer—), (109)
2 n n
in which the parametengand g are constrained by the relati¢®0). Eq. (73)becomes

1 ,3 1 Diuxx 2
Dy = <Mxx 5 E) B+D+ <m + 77) 2 + ¢5. (110)

Assume that, can be expanded in a power series of the f¢r8). Eq. (110)implies that
¢ is determined by the recursion relations

1 1
o = (wa— L4 2) 6+, (111)
2 2
0D — Dyuxx 6% + Do +Z¢<l) (=) oq (112)
o — B2+ 1272 o

wheneveru(x, ¢) is a solution of the HS equation, and it follows frdag. (74)that the
coefficients of the series i, given in(85), are a sequence of conserved densities for the
HS equation.

5. Conclusion

The inverse scattering meth¢#i8—20] may be rewritten by considering as a three
component vector an@ as a traceless:33 matrix one-fornf17]. The latter yields directly
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the curvature condition (Gaussian curvature equaltpcorresponding to pseudo-spherical
surfaces). This geometrical method is considered for several NLPDEs which describe pss:
NLSE, Liouville’s equation, the two families of equations, a NLEE, the 1S, CH and HS
equations. Next an infinite number of conservation laws is derived for the first five of the
NLPDEs just mentioned using a theorem by Cavalcante and Tenenblat [7]. This geometrical
method allows some further generalization of the work on conservation laws given by Wadati
et al.[20]. An infinite number of conservation laws for all eight NLPDEs mentioned above
are derived in this way.
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