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Abstract

The relation between pseudo-spherical surfaces and the inverse scattering method is exempli-
fied for several evolution equations. Conservation laws for the latter ones are obtained using a
geometrical property of these pseudo-spherical surfaces.
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1. Introduction

In 1979, Sasaki[1] observed that a class of nonlinear partial differential equations
(NLPDEs), such as Korteweg–de Vries (KdV), modified Korteweg–de Vries (MKdV) and
sine-Gordon (SG) equations which can be solved by the Ablowitz, Kaup, Newell and Segur
(AKNS) 2 × 2 inverse scattering method (ISM)[2], was related to pseudo-spherical sur-
faces (pss). The geometric notion of a differential equation (DE), for a real function, which
describes a pss was actually introduced in the literature by Chern and Tenenblat[3], where
equations of typeut = F(u, ux, . . . , uxk) (uxk = ∂ku/∂xk) were studied systematically.
Later, in[4,5], this concept was applied to other types of DEs. A generic solution of such
an equation provides a metric defined on an open subset inR2, for which the Gaussian
curvature is−1.
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Such a DE is characterized as being the integrability condition of a linear problem of the
form

νx =




 η/2 0

0 −η/2


 + A


 ν, νt = Qν,

whereη is a parameter,Q is a 2× 2 traceless matrix andA is a 2× 2 off-diagonal ma-
trix depending onη, u and its derivatives. Examples of this class of equations are (real)
equations of the AKNS type. Other examples, which are not AKNS, can be found in
[4–6]. Geometric interpretation of special properties (such as infinite number of conser-
vation laws and Bäcklund transformations (BTs)) for solutions of DEs which describe
pss have been systematically exploited in[7–10]. In 1995, Kamran and Tenenblat[11],
extending the results of Chern and Tenenblat[3], gave a complete classification of the
evolution equations (EEs) of typeut = F(u, ux, . . . , u

k
x) which describe pss by consider-

ing equations which are the integrability condition of a linear problem of the form given
above.

Moreover, they proved that there exists, under a technical assumption, a smooth mapping
transforming any generic solution of one such equation into a solution of the other. This geo-
metric notion of scalar DEs was also generalized to DEs of the typeF(x, t, u, ux, . . . , uxntm) =
0 by Reyes recently in[8,21,22].

Let g be a Riemannian metric onM2,∇ the corresponding Levi–Civita connection on
the tangent bundleTM2, {e1, e2} be a moving orthonormal frame on some open domain
U ⊂ M2 and{ω1, ω2} a corresponding moving coframe. The relations∇(ei) = ω

j
i ⊗ ej

define the connection one-form matrixωji with respect to the frame{e1, e2}. The or-
thogonality of this frame implies thatω1

1 = ω2
2 = 0, ω2

1 = −ω1
2 = (ω3). Hence the

Levi–Civita connection one-form on the tangent bundleTM2 with respect to the moving
frame{e1, e2} is

 0 ω3

−ω3 0


 .

It yields the following structural equations:

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3. (1)

The Gaussian curvaturek of the spaceM2 is defined by the Gauss equation

dω3 = kω2 ∧ ω1. (2)

Sasaki[1] gave a formula for some local connection on a two-dimensional real Riemannian
manifoldM2, which is quite relevant in the theory of nonlinear integrable partial differential
equations:

Ω = 1

2


 ω2 ω1 − ω3

ω1 + ω3 −ω2


 , (3)
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as a new connection form for some (nonspecified) bundle overM2. The key property of the
matrix one-formΩ is that it satisfies the curvature condition

Θ ≡ dΩ −Ω ∧Ω = 0,

iff k = −1 onU. In some older (for example[12]) and many subsequent papers (some
of the most recent are[13–16]) different matrix one-forms were discussed, depending on
a functionu (or some functions) of some independent variables, such that the curvature
conditionΘ = 0 for this form is equivalent to one of the well known NLPDEs having an
infinite number of conservation laws and symmetry groups. The generalization to higher
dimensions is given in[17].

The conditionΘ = 0 depends only on relation (1) and the commutative relations in the
algebra SL(2, R). The one-formΩ may be written as[17]:

Ω =




0 ω3 −ω1

−ω3 0 −ω2

−ω1 −ω2 0


 ,

which contains the Levi–Civita connection form
 0 ω3

−ω3 0


 ,

as a direct summand and avoids the surprising factor 1/2 in (3).
As a consequence, each solution of the DE provides a metric onM2, whose Gaussian

curvature is constant, equal to−1. Moreover, the above definition is equivalent to saying
that the DE foru is the integrability condition for the problem:

dν = Ων, ν =



ν1

ν2

ν3


 , (4)

where d denotes exterior differentiation,ν is a vector and the 3×3 matrixΩ(Ωij , i, j = 1–3)
is traceless

trΩ = 0, (5)

and consists of a one-parameter (η, the eigenvalue) family of one-forms in the independent
variables(x, t), the dependent variableu and its derivatives. Integrability ofEq. (4)requires:

0 = d2ν = dΩν −Ω ∧ dν = (dΩ −Ω ∧Ω)ν,

or the vanishing of the two-form

Θ ≡ dΩ −Ω ∧Ω = 0, (6)

which corresponds, by construction, to the original NLEE to be solved.Eq. (4)corresponds
to three equations and only selected solutions are possible, i.e. those satisfying(6). This
was of course, equally true in that Sasaki formulation.
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The main aim of this paper is to extend somewhat the inverse scattering problem in
reference[18] by consideringν as a three component vector andΩ as a traceless 3×
3 matrix one-form. An application of the original Chern and Tenenblat construction of
conservation laws is given for the nonlinear Schrödinger equation (NLSE)[23–28],
Liouville’s equation [29], two families of equations[10], the Ibragimov–Shabat (IS)
equation, the Camassa–Holm (CH) equation and Hunter–Saxton (HS) equation, which
are very useful in several areas of physics as may be seen from the numerous
references.

The paper is organized as follows. InSection 2we introduce the inverse scattering problem
and apply the geometrical method to several PDEs which describe pss. InSection 3we
obtain an infinite number of conserved densities for some NLEEs which describe pss using
a theorem of Cavalcante and Tenenblat[7]. In Section 4we obtain conservation laws by
extending the classical discussion of Wadati et al.[20]. Section 5contains the conclusion.

2. Inverse scattering problem and DEs which describe pss

Some NLPDEs, invariant to translations inx andt, can be solved exactly by an ISM with
the set of linear equations

ν1x = f31ν2 − f11ν3, ν2x = −f31ν1 − ην3, ν3x = −f11ν1 − ην2, (7)

ν1t = f32ν2 − f12ν3, ν2t = −f32ν1 − f22ν3, ν3t = −f12ν1 − f22ν2. (8)

The functionsfij , 1 ≤ i ≤ 3,1 ≤ j ≤ 2, depend onx, t, u and its derivatives. They
can also be functions of the parameterη. We have restricted ourselves to the case where
f21 = η is a parameter. The compatibility conditions forEqs. (7) and (8), obtained by cross
differentiation, are:

f12,x − f11,t = f31f22 − ηf32, (9)

f22,x = f11f32 − f12f31, (10)

f32,x − f31,t = f11f22 − ηf12. (11)

In order to solve(9)–(11)for fij in general, one finds that another condition still has to be
satisfied. This latter condition is the evolution equation (EE). In terms of exterior differential
forms the inverse scattering problem can be formulated as follows:Eqs. (7) and (8)can be
rewritten in matrix form by usingEq. (4), andΩ is a traceless 3× 3 matrix of one-forms
given by

Ω =




0 f31 dx+ f32 dt −f11 dx− f21 dt

−f31 dx− f32 dt 0 −ηdx− f22 dt

−f11 dx− f21 dt −ηdx− f22 dt 0


 . (12)

In this scheme(6), yielding the EE, must be satisfied for the existence of a solution
fij ,1 ≤ i ≤ 3,1 ≤ j ≤ 2. Whenever the functions are real, Sasaki[1] gave a geometrical
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interpretation for the problem. Consider the one-forms defined by

ω1 = f11 dx+ f12 dt, ω2 = f21 dx+ f22 dt, ω3 = f31 dx+ f32 dt.

We say that a DE foru(x, t) describes a pss if it is a necessary and sufficient condition
for the existence of functionsfij ,1 ≤ i ≤ 3,1 ≤ j ≤ 2, depending onu and its derivatives,
f21 = η, such that the one-forms inEq. (2), satisfy the structureEq. (3)of a pss. It follows
from this definition that for each nontrivial solutionu of the DE, one gets a metric defined
onM2, whose Gaussian curvature is−1.

It has been known, for a long time, that the SG equation describes a pss. More recently,
other equations, such as KdV and MKdV equations, were also shown to describe such
surfaces[2]. Here we show that other equations such as the NLSE, Liouville’s equation, two
families of equations, IS equation, CH equation and HS equation describe pss as well. The
latter equations proved to be of great importance in many physical applications[3,7,21–30].
The procedure is clarified in the following examples.

LetM2 be a differentiable surface, parametrized by coordinatesx, t.

2.1. Nonlinear Schrödinger equation

Consider

ω1 = 1
2(u− u∗)dx+ [iη(u− u∗)+ i(ux + u∗

x)] dt, ω2 = ηdx+ [2iη2 + iuu∗] dt,

ω3 = −1
2 (u+ u∗)dx+ [−iη(u+ u∗)+ i(u∗

x − ux)] dt. (13)

M2 is a pss iffu satisfies the NLSE

iut + 2uxx + u2u∗ = 0. (14)

2.2. Liouville’s equation

Consider

ω1 = ux dx, ω2 = ηdx+ eu

η
dt, ω3 = eu

η
dt. (15)

ThenM2 is a pss iffu satisfies the Liouville’s equation

uxt = eu. (16)

2.3. The family of equations

Consider

ω1 = − ξ

η
g′ dt, ω2 = ηdx+

(
ξ2g− θ

η
+ βη

)
dt,

ω3 = ξux dx+ ξ(αg+ β)ux dt. (17)

ThenM2 is a pss iffu satisfies the family of equations

[ut − (αg(u)+ β)ux]x = −g′(u), (18)
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whereg(u) is a differentiable function ofu which satisfiesg′′ +µg = θ, whereα, β, µ and
θ are real constants, such thatξ2 = αη2 + µ.

2.4. The family of equations

Consider

ω1 = ξux dx+ ξ(αg+ β)ux dt, ω2 = ηdx+
(
ξ2g− θ

η
+ βη

)
dt,

ω3 = ξ

η
g′ dt. (19)

ThenM2 is a pss iffu satisfies the family of equations

[ut − (αg(u)+ β)ux]x = g′(u), (20)

whereg(u) is a differentiable function ofu which satisfiesg′′ +µg = θ, whereα, β, µ and
θ are real constants, such thatξ2 = αη2 − µ.

2.5. NLEE

Consider

ω1 = −η
√

2
3ux dt, ω2 = ηdx+

(
η3 + 1

3ηu
2 + αη

)
dt,

ω3 =
√

2
3udx+

√
2
3

(
η2u+ 1

3u
3 + uxx + αu

)
dt. (21)

ThenM2 is a pss iffu satisfies the NLEE

ut = uxxx + (a+ u2)ux, (22)

wherea is a constant.

2.6. The IS equation

Consider

ω1 =
(ux
u

+ u2
)

dx+
(uxxx

u
+ u6 + 8u2

x + 5uuxx + 9u3ux

)
dt,

ω2 = ηdx+ η
(uxx

u
+ u4 + 4uux

)
dt, ω3 = −ηdx− η

(uxx

u
+ u4 + 4uux

)
dt.

(23)

ThenM2 is a pss iffu satisfies IS equation

ut = uxxx + 3u2uxx + 9uu2
x + 3u4ux. (24)
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2.7. The CH equation

Consider

ω1 =
(
uxx − u− β + β

η2
− η−2

)
dx

+
(
uxβ

η
− β

η2
+ η−2 + u2 − 1 + uβ + ux

η
− uuxx

)
dt,

ω2 = ηdx+
(−β

η
− ηu+ η−1 + ux

)
dt,

ω3 = (uxx − u+ 1)dx+
(
uβ

η2
−uxβ

η
− u

η2
− β

η2
+ η−2 + u2 − u+ ux

η
− uuxx

)
dt.

(25)

ThenM2 is a pss iffu satisfies the CH equation

2uxuxx + uuxxx = ut − uxxt + 3uux, (26)

in which the parametersη andβ are constrained by the relation

η4 − η2 + β2η2 = β2 + 1 − 2β. (27)

2.8. The HS equation

Consider

ω1 = (uxx − β)dx+
(
ux − uxβ

η
+ 1 − β

η2
− uuxx − 1 + uβ

)
dt,

ω2 = ηdx+
(

1 − β

η
− ηu+ ux

)
dt,

ω3 = (uxx + 1)dx+
(
ux − uxβ

η
+ 1 − β

η2
− uuxx − u

)
dt. (28)

ThenM2 is a pss iffu satisfies the HS equation

2uxuxx + uxxt + uuxxx = 0, (29)

in which the parametersη andβ are constrained by the relation

η2 + β2 = 1. (30)

3. Infinite number of conservation laws for some NLEEs

In this section we apply the Cavalcante and Tenenblat method to obtain an infinite num-
ber of conserved densities for some NLEEs. To each equation we associate functionsfij

satisfying the following theorem[7].
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Theorem 1. Letfij ,1 ≤ i ≤ 3,1 ≤ j ≤ 2, be differentiable functions of x, t such that

−f11,t + f12,x = f31f22 − f21f32, −f21,t + f22,x = f11f32 − f12f31,

−f31,t + f32,x = f11f22 − f12f21. (31)

Then the following statements are valid:

(i) The following system is completely integrable forφ:

φx = f31 + f11 sinφ + f21 cosφ, φt = f32 + f12 sinφ + f22 cosφ. (32)

(ii) For any solutionφ of (32)

ω = (f11 cosφ − f21 sinφ)dx+ (f12 cosφ − f22 sinφ)dt, (33)

is a closed one-form.
(iii) If fij are analytic functions of a parameterη at the origin, then the solutionsφ(x, t, η)

of (32)and the one-formω are also analytic inη at the origin.

Cavalcante and Tenenblat supposed[7]

fij (x, t, η) =
∞∑
k=0

f kij (x, t)η
k. (34)

Then the solutionφ of (32) is of the form

φ(x, t, η) =
∞∑
j=0

φj(x, t)η
j. (35)

We consider the following functions ofη, for fixedx, t:

A(η) = cosφ = cos


 ∞∑
j=0

φj(x, t)η
j


 , B(η) = sinφ = sin


 ∞∑
j=0

φj(x, t)η
j


 .

(36)

It follows from (36) that

A(0) = cosφ0, B(0) = sinφ0,
dkA

dηk
(0) = −(k − 1)!

k−1∑
i=0

k − i

i!

diB

dηi
(0)φk−i,

dkB

dηk
(0) = (k − 1)!

k−1∑
i=0

k − i

i!

diA

dηi
(0)φk−i (37)

for k ≥ 1. Finally, we define the functions ofx, t:

H
ij
k = f i1k

dj−iA
dηj−i

(0)− f i2k
dj−iB
dηj−i

(0), L
ij
k = f i1k

dj−iB
dηj−i

(0)+ f i2k
dj−iA
dηj−i

(0),

F1k = f 1
3k + L11

k , Fnk = fn3k +
n−1∑
r=1

n− r

r!
H0r
k φn−r +

n∑
r=1

1

n− r!
Lrn
k , (38)
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wherei, j, n are the nonnegative integers such thatj ≥ i, n ≥ 2, andk = 1,2. The functions
H

ij
k andLij

k defined above depend onφ0, φ1, . . . , φj−i; the functionsF1k andFnk depend
onφ0 andφ0, φ1, . . . , φn−1, respectively.

Corollary 1. Let fij (x, t, η),1 ≤ i ≤ 3,1 ≤ j ≤ 2, be differentiable functions ofx, t,
analytic atη = 0, that satisfy(31). Then, with the above notation, the following statements
hold:

(a) The solutionφ of (32) is analytic atη = 0, thenφ0 is determined by

φ0,x = f 0
31 + L00

1 , φ0,t = f 0
32 + L00

2 , (39)

and, for j ≥ 1, φj are recursively determined by the system

φj,x = H00
1 φj + Fj1, φj,t = H00

2 φj + Fj2. (40)

(b) For any such solutionφ and integerj ≥ 1

ωj =
j∑
i=0

1

(j − i)!
(H

ij
1 dx+H

ij
2 dt), (41)

is a closed one-form.

Now we consider NLPDEs foru(x, t)which describes a pss. There exist functionsfij ,1 ≤
i ≤ 3,1 ≤ j ≤ 2, which depend onu(x, t) and its derivatives such that, for any solutionu
of the EE,fij satisfy(31). Then it follows fromTheorem 1that(32)is completely integrable
for φ. Supposefij to be analytic functions of a parameterη, then the solutionsφ of (32)and
the one-formω, given in(33), are analytic inη. Their coefficientsφj andωj, as functions
of u, are determined in(39)–(41). Therefore the closed one-formsωj provide a sequence
of conservation laws for the PDE, with conserved density and flux given respectively by

Dj =
j∑
i=0

1

(j − i)!
H

ij
1 , Fj = −

j∑
i=0

1

(j − i)!
H

ij
2 , j ≥ 0. (42)

We consider the following examples.

3.1. Nonlinear Schrödinger equation

For Eq. (14)we consider the following functions ofu(x, t) defined by:

f11 = 1
2(u− u∗), f12 = [iη(u− u∗)+ i(ux + u∗

x)], f21 = η,

f22 = [2iη2 + iuu∗], f31 = −1
2 (u+ u∗), f32 = [−iη(u+ u∗)+ i(u∗

x − ux)],

(43)

as corresponding toEq. (13). For any solutionu of Eq. (14)the above functionsfij satisfy
(31). Applying the corollary, we have a sequence of functionsφj determined in(36) and
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(37). It follows from (43) that(39) reduces to

φ0,x = −1
2 (u+ u∗)+ 1

2(u− u∗) sinφ0,

φ0,t = i(u∗
x − ux)+ i(u∗

x + ux) sinφ0 + 2iuu∗ cosφ0, (44)

and from(37)we obtain recursively

φj = es
(

1 +
∫

Fj1e
−s dx

)
, j ≥ 1, (45)

where

s =
∫

1
2(u− u∗) cosφ0 dx,

and

Fj1 = 1

(j − 1)!

dj−1A

dηj−1
(0)+ 1

j

j−1∑
i=1

j − i

i!

(u− u∗)
2

diA

dηi
(0)φj−i.

The sequence of conserved densities for NLSE is given by

1

2
(u− u∗) cosφ0,

1

j!

(u− u∗)
2

djA

dηj
(0)− 1

(j − 1)!

dj−1B

dηj−1
(0), j ≥ 1. (46)

Solving the integrable system ofEq. (44), then fromφ0 we obtainφj, j ≥ 1, defined in
(45).

3.2. Liouville’s equation

For Eq. (16)we consider the functions defined by

f11 = ux, f12 = 0, f21 = η, f22 = eu

η
, f31 = 0, f32 = eu

η
. (47)

For any solutionu of Eq. (16), the above functions satisfy(31). As in the preceding exam-
ple, we obtain a sequence of conserved densities for(16)by using theorem(1). Substituting
(47) into (32), we obtain the system of equations

φx = ux sinφ + η cosφ, φt = eu

η
(1 + cosφ), (48)

which is completely integrable wheneveru is a solution ofEq. (16). From the first equation
of (48)we conclude thatφ is analytic with respect toη. Therefore, consider

φ =
∞∑
j=0

φj(x, t)η
j. (49)

Eq. (48)reduces to

φ0,x = ux sinφ0, φ0 = nπ, n = 0,3,5, . . . ,

φj = eh
(

1 +
∫

Fj1e
−h dx

)
, j ≥ 1, (50)
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where

h = −
∫

ux dx = −u+ g(t), F11 = −1,

and

Fj1 = 1

(j − 1)!

dj−1A

dηj−1
(0)+ 1

j

j−1∑
i=1

j − i

i!
ux

diA

dηi
(0)φj−i, j ≥ 2.

Using (37) in the above expression, we obtainφj in terms ofu. We display only the first
terms of the series:

φ0 = nπ, n = 0,3,5, . . . , φ1 = eh
(

1 +
∫

e−h dx

)
, φ2 = eh, etc.

(51)

The sequence of conserved densities for Liouville’s equation is given by

ux cosφ0,
ux

j!

djA

dηj
(0)− 1

(j − 1)!

dj−1B

dηj−1
(0), j ≥ 1. (52)

Using the expressions inEq. (37)and the functionsφj given in(50) we obtain the first
conserved densities:

−ux, uxe−2u(2u2
t + 2utt + euut), etc. (53)

3.3. The family of equations

For any solutionu of the family ofEq. (18), the functions

f11 = 0, f12 = − ξ

η
g′, f21 = η, f22 = ξ2g− θ

η
+ βη,

f31 = ξux, f32 = ξ(αg+ β)ux, (54)

satisfy(31). Applying the corollary, we obtainφj, j ≥ 0, defined by

φ0 =
∫

ξux dx = ξu+ h(t), φj = 1

(j − 1)!

∫
dj−1A

dηj−1
(0)dx, j ≥ 1. (55)

Using(37) in the above expressions we obtainφj. The first terms are

φ0 = ξu+ h(t), φ1 =
∫

cosφ0 dx, φ2 = −
∫

φ1 sinφ0 dx, etc. (56)

The conserved densities are given by

dj−1B

dηj−1
(0), j ≥ 1. (57)

Using(37), we obtain the first terms

sinφ0, φ1 cosφ0,2φ2 cosφ0 − φ2
1 sinφ0, etc., (58)

where theφj are given in(55).
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3.4. The family of equations

For Eq. (20)we consider the functions ofu(x, t) defined by

f11 = ξux, f12 = ξ(αg+ β)ux, f21 = η,

f22 = ξ2g− θ

η
+ βη, f31 = 0, f32 = ξ

η
g′. (59)

For any solutionu of Eq. (20), the above functionsfij satisfy(31). Applying the corollary,
we have a sequence of functionsφj determined in(36) and (38). It follows from (59) that
reduces to

φ0,x = ξux sinφ0, ξg′ + (ξ2g− θ) cosφ0 = 0, (60)

and from(37)we obtain recursively

φj = eh
(

1 +
∫

Fj1e
−h dx

)
, j ≥ 1, (61)

where

h =
∫

ξux cosφ0 dx,

and

Fj1 = 1

(j − 1)!

dj−1A

dηj−1
(0)+ 1

j

j−1∑
i=1

j − i

i!
ξux

diA

dηi
(0)φj−i.

The sequence of conserved densities for the family of equations is given by

ξux cosφ0,
ξux

j!

djA

dηj
(0)− 1

(j − 1)!

dj−1B

dηj−1
(0), j ≥ 1. (62)

Solving the integrable system ofEq. (60), fromφ0 we obtainφj, j ≥ 1, defined in(61).

3.5. NLEE

For any solutionu of the NLEE(22) the functions

f11 = 0, f12 = −η
√

2
3ux, f21 = η, f22 = (η3 + 1

3ηu
2 + aη),

f31 =
√

2
3u, f32 =

√
2
3(η

2u+ 1
3u

3 + uxx + au), (63)

satisfy(31). Applying the corollary, we obtainφj, j ≥ 0, defined by

φ0 =
√

2

3

∫
udx, φj = 1

(j − 1)!

∫
dj−1A

dηj−1
(0)dx, j ≥ 1. (64)
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Using(37) in the above expressions we obtainφj. The first terms are

φ0 =
√

2

3

∫
udx, φ1 =

∫
cosφ0 dx, φ2 = −

∫
φ1 sinφ0 dx, etc.

The conserved densities are given by

dj−1B

dηj−1
(0), j ≥ 1.

Using(37), we obtain the first ones

sinφ0, φ1 cosφ0,2φ2 cosφ0 − φ2
1 sinφ0, etc., (65)

where theφj are given in(64).

4. Conservation laws for NLEEs which describe pss

One of the most widely accepted definitions of integrability of PDEs requires the exis-
tence of soliton solutions, i.e., of a special kind of traveling wave solutions that interact
“elastically”, without changing their shapes. The analytic construction of soliton solutions
is based on the general ISM. In the formulation of Zakharov and Shabat[19], all known
integrable systems supporting solitons can be realized as the integrability condition of a
linear problem of the form

νx = Pν, νt = Qν, (66)

where the matricesP andQ are two 2× 2 null-trace matrices

P =



η

2
q

r
−η
2


 , Q =


A B

C −A


 . (67)

Hereη is a parameter, independent ofx andt. Thus, an equation is kinematically integrable
if it is equivalent to the curvature condition

Px −Qt + [P,Q] = 0. (68)

Konno and Wadati introduced the function[18]

Γ = ν1

ν2
, (69)

and for each of the NLEE, derived a BT with the following form:

u = u0 + f(Γ, η), (70)

whereu is a new solution of the corresponding NLEE. As mentioned in the previous
sections, Sasaki[1], Chern and Tenenblat[3], and Cavalcante and Tenenblat[7] have given
a geometrical method for constructing conservation laws of equations describing pss. The



A.H. Khater et al. / Journal of Geometry and Physics 51 (2004) 332–352 345

formal content of this method is contained in the following theorem, which may be seen as
generalizing the classical discussion on conservation laws appearing by Wadati et al.[20].

Theorem 2. Suppose thatut = F(u, ux, . . . , uxk ) or more generallyF(x, t, u, ux, . . . ,
uxntm) = 0 is an EE describing pss. The systems

Dxφ1 = qr +
(
Dxq

q
− η

)
φ1 − φ2

1, (71)

Dt

(η
2

+ φ1

)
= Dx

(
A+ B

q
− φ1

)
, (72)

and

Dxφ2 = −qr +
(
Dxr

r
+ η

)
φ2 + φ2

2, (73)

Dt

(η
2

+ φ2

)
= Dx

(
A+ C

r
φ2

)
, (74)

in whichDx, andDt are the total derivative operator defined by

Dx = ∂

∂x
+

∞∑
k=0

uk+1
∂

∂uk
, Dt = ∂

∂t
+

∞∑
k=0

Dk
x(f)

∂

∂uk
,

are integrable on solutions of the equationut = F(u, ux, . . . , uxk ) or generallyF(x, t, u,
ux, . . . , uxntm) = 0.

Proof. The equationut = F(u, ux, . . . , uxk ) or more generallyF(x, t, u, ux, . . . , uxntm) =
0 is the necessary and sufficient condition for the integrability of the linear problem(66).
Equivalently, in(68), the functionsr, q, A,B andC satisfy the equations

Ax = qC− rB, (75)

qt − 2Aq− Bx + ηβ = 0, (76)

Cx = rt + 2Ar − ηC. (77)

Set

η =

 ν1

ν2


 ,

and defineφ1 = q/Γ, φ2 = rΓ . Straightforward computations usingEqs. (75)–(77)allow
one to check that if

ν =

 ν1

ν2


 ,

is a nontrivial solution of the linear system dν = Ων, φ1 is a solution of the system(71)
and (72)andφ2 is a solution of the system ofEqs. (73) and (74). �
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This theorem provides one with at least oneη-dependent conservation law of the EE
ut = F(u, ux, . . . , uxk ) orF(x, t, u, ux, . . . , uxntm) = 0, to wit,Eqs. (71) and (72)or ((73)
and (74)). One obtains a sequence ofη-independent conservation laws by expandingφ1 or
φ2 in inverse powers ofη [9]

φ2 =
∞∑
n=1

φ
(n)
2 η−n, (78)

consideration ofEq. (73)yields the recursion relation

φ
(1)
2 = −qr, (79)

φ
(n+1)
2 = Dxr

r
φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (80)

which in turn, by replacing into(74), yields the sequence of conservation laws of equations
integrable by AKNS inverse scattering found by Wadati et al.[20]. This section ends with
the examples.

4.1. Nonlinear Schrödinger equation

For Eq. (14)we consider the functions ofu(x, t) defined by

r = −1
2 u∗, q = 1

2u, A− iη2 + 1
2 iuu∗,

B= [iηu+ iux], C = −iη(u∗)+ i(u∗
x). (81)

Eq. (73)becomes

Dxφ2 = 1

4
uu∗ +

(
Dxu

∗

u∗ + η

)
φ2 + φ2

2. (82)

Assume thatφ2 can be expanded in a series of the form(78).
Eq. (81)implies thatφ2 is determined by the recursion relation

φ
(1)
2 = 1

4uu∗, (83)

φ
(n+1)
2 = Dxu

∗

u∗ φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (84)

wheneveru(x, t) is a solution of the NLSE. This recursion relation yields a sequence of
conserved densities given by the coefficients of the series inη

η

2
+

∞∑
n=1

φ
(n)
2 η−n, (85)

which one obtains fromEq. (74).
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4.2. Liouville’s equation

For (16)we consider the functions defined by

r = 1

2
ux, q = 1

2
ux, A = eu

2η
, B = −eu

2η
, C = eu

2η
. (86)

Eq. (76)becomes

Dxφ2 = −1

4
u2
x +

(
Dxux

ux
+ η

)
φ2 + φ2

2. (87)

Assume thatφ2 can be expanded in a series of the form(78). Eq. (87)implies thatφ2 is
determined by the recursion relation

φ
(1)
2 = −1

4 u2
x, (88)

φ
(n+1)
2 = Dxux

ux
φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i−1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (89)

wheneveru(x, t) is a solution of Liouville’s equation, and it follows fromEq. (74)that
the coefficients of the series inη, given in(85) are a sequence of conserved densities for
Liouville’s equation.

4.3. The family of equations

For any solutionu of the family ofEq. (18), we consider the functions

r = ξux

2
, q = −ξux

2
, A = 1

2

(
ξ2g− θ

η
+ βη

)
,

B= −1

2

(
ξ

η
g′ + ξ(αg+ β)ux

)
, C = 1

2

(
ξ(αg+ β)ux − ξ

η
g′

)
. (90)

Eq. (73)becomes

Dxφ2 = 1

4
ξ2u2

x +
(
Dxux

ux
+ η

)
φ2 + φ2

2. (91)

Assume thatφ2 can be expanded in a series of the form(78). Eq. (91)implies thatφ2 is
determined by the recursion relation

φ
(1)
2 = 1

4ξ
2u2

x, (92)

φ
(n+1)
2 = Dxux

ux
φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (93)

wheneveru(x, t) is a solution of the family of equations, and it follows fromEq. (74)that
the coefficients of the series inη, given in(85) are a sequence of conserved densities for
the family of equations.
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4.4. The family of equations

For theEq. (20)we consider the functions ofu(x, t) defined by

r = ξux

2
, q = ξux

2
, A = 1

2

(
ξ2g− θ

η
+ βη

)
, B = 1

2

(
ξ

η
g′ + ξ(αg+ β)ux

)
,

C = 1

2

(
ξ(αg+ β)ux − ξ

η
g′

)
. (94)

Eq. (73)becomes

Dxφ2 = −1

4
ξ2u2

x +
(
Dxux

ux
+ η

)
φ2 + φ2

2. (95)

Assume thatφ2 can be expanded in a series of the form(78). Eq. (95)implies thatφ2 is
determined by the recursion relations

φ
(1)
2 = −1

4
ξ2u2

x, φ
(n+1)
2 = Dxux

ux
φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (96)

wheneveru(x, t) is a solution of the family of equations, and it follows fromEq. (74)that
the coefficients of the series inη, given in(85), are a sequence of conserved densities for
the family of equations.

4.5. The NLEE

For any solutionu of the NLEE(22) the functions

r = u√
6
, q = −u√

6
, A = 1

2

(
η3 + ηu2

3
+ aη

)
,

B = 1√
6

(
−ηux − η2u− u3

3
− uxx − au

)
,

C = 1√
6

(
−ηux + η2u+ u3

3
+ uxx + au

)
. (97)

Eq. (73)becomes

Dxφ2 = 1

6
u2 +

(
Dxu

u
+ η

)
φ2 + φ2

2. (98)

Assume thatφ2 can be expanded in a series of the form(78). Eq. (98)implies thatφ2 is
determined by the recursion relation

φ
(1)
2 = 1

6u
2, (99)

φ
(n+1)
2 = Dxu

u
φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (100)
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wheneveru(x, t) is a solution of the NLEE, and it follows fromEq. (74)that the coefficients
of the series inη, given in(85)are a sequence of conserved densities for the NLEE.

4.6. The IS equation

For any solutionu of the ISEq. (24)we consider the functions

r = 1

2

(ux
u

+ u2 − η
)
, q = 1

2

(ux
u

+ u2 + η
)
, A = η

2

(uxx

u
+ u4 + 4uux

)
,

B = 1

2

[(uxxx

u
+ u6 + 8u2

x + 5uuxx + 9u3ux

)
+ η

(uxx

u
+ u4 + 4uux

)]
,

C = 1

2

[(uxxx

u
+ u6 + 8u2

x + 5uuxx + 9u3ux

)
− η

(uxx

u
+ u4 + 4uux

)]
. (101)

Eq. (73)becomes

Dxφ2 = −1

4

((ux
u

+ u2
)2 − η2

)
+

(
Dx(ux/u+ u2 − η)

ux/u+ u2 − η
+ η

)
φ2 + φ2

2. (102)

Assume thatφ2 can be expanded in a series of the form(78). Eq. (102)implies thatφ2 is
determined by the recursion relation

φ
(1)
2 = −1

4

((ux
u

+ u2
)2 − η2

)
, (103)

φ
(n+1)
2 = Dx(ux/u+ u2 − η)

ux/u+ u2 − η
φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (104)

wheneveru(x, t) is a solution of the IS equation, and it follows fromEq. (74) that the
coefficients of the series inη, given in(85), are a sequence of conserved densities for the
IS equation.

4.7. CH equation

For any solutionu of the CHEq. (26), we consider the functions

r =
(
uxx − u− β

2
+ β

2η2
− η−2

2
+ 1

2

)
, q = 1

2

(
β

η2
− η−2 − β − 1

)
,

A = 1

2

(−β
η

− ηu+ η−1 + ux

)
, B =

(
uxβ

η
+ u+ uβ − 1

2
− uβ

2η2

)
,

C =
(
u2 + η−2 − uuxx − β

η2
− ux

η
− u

2
(β − 1)

(
1 + 1

η2

)
− 1

2

)
, (105)

in which the parametersη andβ are constrained by the relation(27). Eq. (73)becomes

Dxφ2 = −1

2

(
uxx − u− β

2
+ β

2η2
− η−2

2
+ 1

2

) (
β

η2
− η−2 − β − 1

)

+
(

Dx(uxx − u)

uxx − u− β/2 + β/2η2 − η−2/2 + 1/2
+ η

)
φ2 + φ2

2. (106)
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Assume thatφ2 can be expanded in a series of the form(78). Eq. (106)implies thatφ2 is
determined by the recursion relation

φ
(1)
2 = −1

2

(
uxx − u− β

2
+ β

2η2
− η−2

2
+ 1

2

) (
β

η2
− η−2 − β − 1

)
, (107)

φ
(n+1)
2 = Dx(uxx − u)

uxx − u− β/2 + β/2η2 − η−2/2 + 1/2
φ
(n)
2 +Dxφ

(n)
2

+
n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (108)

wheneveru(x, t) is a solution of the CH equation, and it follows fromEq. (74)that the
coefficients of the series inη, given in(85), are a sequence of conserved densities for the
CH equation.

4.8. HS equation

For any solutionu of the HSEq. (29), we consider the functions

r =
(
uxx − β

2
+ 1

2

)
, q = −1

2
(β + 1), A = 1

2

(
1 − β

η
− ηu+ ux

)
,

B = 1

2
(uβ − 1 + u), C =

(
ux − uxβ

η
+ 1 − β

η2
− uuxx + uβ − u− 1

2

)
, (109)

in which the parametersη andβ are constrained by the relation(30). Eq. (73)becomes

Dxφ2 = 1

2

(
uxx − β

2
+ 1

2

)
(β + 1)+

(
Dxuxx

uxx − β/2 + 1/2
+ η

)
φ2 + φ2

2. (110)

Assume thatφ2 can be expanded in a power series of the form(78). Eq. (110)implies that
φ2 is determined by the recursion relations

φ
(1)
2 = 1

2

(
uxx − β

2
+ 1

2

)
(β + 1), (111)

φ
(n+1)
2 = Dxuxx

uxx − β/2 + 1/2
φ
(n)
2 +Dxφ

(n)
2 +

n−1∑
i=1

φ
(i)
2 φ

(n−i)
2 , n ≥ 1, (112)

wheneveru(x, t) is a solution of the HS equation, and it follows fromEq. (74)that the
coefficients of the series inη, given in(85), are a sequence of conserved densities for the
HS equation.

5. Conclusion

The inverse scattering method[18–20] may be rewritten by consideringν as a three
component vector andΩ as a traceless 3×3 matrix one-form[17]. The latter yields directly
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the curvature condition (Gaussian curvature equal to−1, corresponding to pseudo-spherical
surfaces). This geometrical method is considered for several NLPDEs which describe pss:
NLSE, Liouville’s equation, the two families of equations, a NLEE, the IS, CH and HS
equations. Next an infinite number of conservation laws is derived for the first five of the
NLPDEs just mentioned using a theorem by Cavalcante and Tenenblat [7]. This geometrical
method allows some further generalization of the work on conservation laws given by Wadati
et al.[20]. An infinite number of conservation laws for all eight NLPDEs mentioned above
are derived in this way.
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